Jika u(x) dan v(x) adalah fungsi-fungsi yang terdefinisi pada bilangan real, dan u‟(x) dan v‟(x) adalah turunannya, maka kita dapat menurunkan rumus turunan hasil kali, hasil bagi dua fungsi dan pemangkatan fungsi, yakni sebagai berikut:
Untuk lebih jelasnya ikutilah contoh soal berikut ini:
01. Tentukanlah turunan dari setiap fungsi aljabar berikut ini :
(a) f(x) = (x2 – 4x)(2x + 3)
(b) f(x) = (2x2 + 3x – 5)(4x – 2)
Jawab
(a) f(x) = (x2 – 4x)(2x + 3)
Misalkan
u = x2 – 4x maka u' = 2x
v = 2x + 3 maka v' = 2
maka
f '(x) = u'.v + u.v'
f '(x) = (2x)(2x + 3) + (x2 – 4x)(2)
f '(x) = 2x2 + 6x + 2x² – 8x
(b) f(x) = (2x2 + 3x – 5)(4x – 2)
Misalkan
u = 2x2 + 3x – 5 maka u' = 4x + 3
v = 4x – 2 maka v' = 4
maka
f '(x) = u'.v + u.v'
f '(x) = (4x + 3)(4x – 2) + (2x2 + 3x – 5)(4)
f '(x) = 16x2 – 8x + 12x – 6 + 8x2 + 12x – 20
f '(x) = 24x2 + 16x – 26
02. Tentukanlah turunan dari setiap fungsi aljabar berikut ini
Jawab
03. Tentukanlah turunan dari setiap fungsi aljabar berikut ini :
f(x) = 3(2x + 4)5
f(x) = 3(2x + 4)5
Misalkan u = 2x + 4 maka u' = 2
Jadi f (x) = 3u5
f '(x) = 15u4.u'
f '(x) = 15(2x + 4)4(2)
f '(x) = 30(2x + 4)4
Disamping ketiga aturan di atas, terdapat juga aturan rantai untuk menentukan turunan pemangkatan fungsi. Aturan ini mengambil dasar dari notasi Leibniz untuk turunan, sebagai berikut :
Misalkan f, g dan h adalah fungsi-fungsi yang terdefinisi pada x bilangan real, sehingga jika y = f { g(x) } maka aturan rantai untuk turunan fungsi y terhadap x adalah :
Untuk lebih jelasnya ikutilah contoh soal berikut ini:
04. Dengan aturan rantai, tentukanlah turunan setiap fungsi berikut ini
y = 3(x2 - 6x + 8)5
Jawab
Untuk lebih jelasnya, ikutilah contoh soal berikut ini
05. Tentukanlah nilai turunan kedua dari setiap fungsi berikut ini untuk setiap nilai x yang diberikan
(a) f(x) = 2x3 –7x2 – 4x + 8
untuk x = 5
Jawab
f(x) = 2x3 –7x2 – 4x + 8
maka
f '(x) = 6x2 – 14x – 4
f ''(x) = 12x – 14
Sehingga :
f ''(5) = 12(5) – 14
f '‟(2) = 60 – 14
f '‟(2) = 46
0 komentar:
Posting Komentar