Salah satu diantara penggunaan invers matriks adalah untuk menyelesaikan persamaan matriks. Ada dua macam rumus dasar menyelesaikan persamaan matriks, yaitu :
(1) Jika A x B = C maka B =A-1 x C
(2) Jika A x B = C maka A = C x A-1
Untuk lebih memahami rumus diatas, ikutilah contoh soal berikut ini :
01. Diketahui matriks
maka tentukanlah matriks B jika B x A = C
Jawab

Kegunaan lain dari invers matriks adalah untuk menentukan penyelesaian sistim persamaan linier. Tentu saja teknik penyelesaiannya dengan aturan persamaan matriks, yaitu :
Selain dengan persamaan matriks, teknik menyelesaikan sistem persamaan linier juga dapat dilakukan dengan determinan matriks. Aturan dengan cara ini adalah :

Untuk lebih jelaxnya, ikutolah contoh soal berikut ini:
02. Tentukan himpunan penyelesaian sistem persamaan 2x – 3y = 8 dan x + 2y = –3 dengan metoda:
(a) Invers matriks (b) Determinan
Jawab
(a) Dengan metoda invers matriks diperoleh
(b) Dengan metoda determinan matriks diperoleh

Untuk lebih memahami rumus diatas, ikutilah contoh soal berikut ini :
01. Diketahui matriks
maka tentukanlah matriks B jika B x A = C
Jawab
Kegunaan lain dari invers matriks adalah untuk menentukan penyelesaian sistim persamaan linier. Tentu saja teknik penyelesaiannya dengan aturan persamaan matriks, yaitu :
Selain dengan persamaan matriks, teknik menyelesaikan sistem persamaan linier juga dapat dilakukan dengan determinan matriks. Aturan dengan cara ini adalah :
Untuk lebih jelaxnya, ikutolah contoh soal berikut ini:
02. Tentukan himpunan penyelesaian sistem persamaan 2x – 3y = 8 dan x + 2y = –3 dengan metoda:
(a) Invers matriks (b) Determinan
Jawab
(a) Dengan metoda invers matriks diperoleh
(b) Dengan metoda determinan matriks diperoleh
0 komentar:
Posting Komentar